A dichotomic approach to adaptive interaction for socially assistive robots

User Model User-adapt Interact. 2023;33(2):293-331. doi: 10.1007/s11257-022-09347-6. Epub 2022 Nov 17.

Abstract

Socially assistive robotics (SAR) aims at designing robots capable of guaranteeing social interaction to human users in a variety of assistance scenarios that range, e.g., from giving reminders for medications to monitoring of Activity of Daily Living, from giving advices to promote an healthy lifestyle to psychological monitoring. Among possible users, frail older adults deserve a special focus as they present a rich variability in terms of both alternative possible assistive scenarios (e.g., hospital or domestic environments) and caring needs that could change over time according to their health conditions. In this perspective, robot behaviors should be customized according to properly designed user models. One of the long-term research goals for SAR is the realization of robots capable of, on the one hand, personalizing assistance according to different health-related conditions/states of users and, on the other, adapting behaviors according to heterogeneous contexts as well as changing/evolving needs of users. This work proposes a solution based on a user model grounded on the international classification of functioning, disability and health (ICF) and a novel control architecture inspired by the dual-process theory. The proposed approach is general and can be deployed in many different scenarios. In this paper, we focus on a social robot in charge of the synthesis of personalized training sessions for the cognitive stimulation of older adults, customizing the adaptive verbal behavior according to the characteristics of the users and to their dynamic reactions when interacting. Evaluations with a restricted number of users show good usability of the system, a general positive attitude of users and the ability of the system to capture users personality so as to adapt the content accordingly during the verbal interaction.

Keywords: Automated planning; Personalized interaction; Reactive reasoning; Socially Assistive Robots; User modeling.