Solar X-ray and EUV imager on board the FY-3E satellite

Light Sci Appl. 2022 Nov 22;11(1):329. doi: 10.1038/s41377-022-01023-z.

Abstract

The solar X-ray and Extreme Ultraviolet Imager (X-EUVI), developed by the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP), is the first space-based solar X-ray and Extreme ultraviolet (EUV) imager of China loaded on the Fengyun-3E (FY-3E) satellite supported by the China Meteorological Administration (CMA) for solar observation. Since started work on July 11, 2021, X-EUVI has obtained many solar images. The instrument employs an innovative dual-band design to monitor a much larger temperature range on the Sun, which covers 0.6-8.0 nm in the X-ray region with six channels and 19.5 nm in the EUV region. X-EUVI has a field of view of 42', an angular resolution of 2.5″ per pixel in the EUV band and an angular resolution of 4.1″ per pixel in the X-ray band. The instrument also includes an X-ray and EUV irradiance sensor (X-EUVS) with the same bands as its imaging optics, which measures the solar irradiance and regularly calibrates the solar images. The radiometric calibration of X-EUVS on the ground has been completed, with a calibration accuracy of 12%. X-EUVI is loaded on the FY-3E satellite and rotates relative to the Sun at a uniform rate. Flat-field calibration is conducted by utilizing successive rotation solar images. The agreement between preliminarily processed X-EUVI images and SDO/AIA and Hinode/XRT images indicates that X-EUVI and the data processing algorithm operate properly and that the data from X-EUVI can be applied to the space weather forecast system of CMA and scientific investigations on solar activity.