Fabrication, Characterization and In Planta Uptake of Engineered Surfactant Nanovesicles for the Delivery of the Biostimulant Sodium Copper Chlorophyllin

J Agric Food Chem. 2022 Dec 7;70(48):15028-15037. doi: 10.1021/acs.jafc.2c05279. Epub 2022 Nov 22.

Abstract

Effective delivery of agrochemicals requires control over bioactive release kinetics coupled with effective penetration of the bioactive into plants. Herein, we demonstrate the fabrication of hybrid nanovesicles based on sodium dodecylbenzenesulfonate (SDBS) and cetyltrimethylammonium bromide (CTAB) for enabling effective delivery of the biostimulant sodium copper chlorophyllin (Cu-chl) into plants. SDBS-CTAB nanovesicles exhibited a particle size of 107 nm with a well-defined spherical morphology, while modified formulations that included small fractions of the unsaturated dopant Span 80 yielded larger nanovesicles that were softer and more irregular in shape. All nanovesicles maintained high colloidal stability over >4 weeks and enabled sustained Cu-chl release, with the incorporation of Span 80 into the membranes enabling controllable acceleration of the release rate. Nanovesicle encapsulation improved the photostability of Cu-chl bioactive 3-4 × relative to that of free Cu-chl and enabled significant penetration of Cu-chl into the plant root without inducing any significant phytotoxicity.

Keywords: encapsulation of biostimulants; in planta uptake; nanovesicle characterization; nanovesicle fabrication; sodium copper chlorophyllin.

MeSH terms

  • Surface-Active Agents*

Substances

  • Surface-Active Agents
  • chlorophyllin