Crystallographic and Physicochemical Analysis of Bovine and Human Teeth Using X-ray Diffraction and Solid-State Nuclear Magnetic Resonance

J Funct Biomater. 2022 Nov 19;13(4):254. doi: 10.3390/jfb13040254.

Abstract

Dental research often uses bovine teeth as a substitute for human teeth. The aim of this study was to evaluate differences in the crystalline nanostructures of enamel and dentin between bovine and human teeth, using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR). The crystallite size (crystallinity) and microstrains were analyzed using XRD with the Rietveld refinement technique and the Halder-Wagner method. The 31P and 1H NMR chemical environments were analyzed by two-dimensional (2D) 1H-31P heteronuclear-correlation (HETCOR) magic-angle spinning (MAS) NMR spectroscopy. Enamel had a greater crystallite size and fewer microstrains than dentin for both bovine and human teeth. When compared between the species, the bovine apatite had a smaller crystallite size with more microstrains than the human apatite for both dentin and enamel. The 2D HETCOR spectra demonstrated that a water-rich layer and inorganic HPO4- ions were abundant in dentin; meanwhile, the hydroxyl group in the lattice site was more dominant in enamel. A greater intensity of the hydroxyl group was detected in human than in bovine for both dentin and enamel. For 31P projections, bovine dentin and bovine enamel have wider linewidths than human dentin and human enamel, respectively. There are differences in the crystallite profile between human and bovine. The results of dental research should be interpreted with caution when bovine teeth are substituted for human teeth.

Keywords: X-ray diffraction; apatites; dentin; enamel; heteronuclear; solid-state nuclear magnetic resonance.