Microglia and metastases to the central nervous system: victim, ravager, or something else?

J Exp Clin Cancer Res. 2022 Nov 21;41(1):327. doi: 10.1186/s13046-022-02535-7.

Abstract

Central nervous system (CNS) metastases are a major cause of death in patients with cancer. Tumor cells must survive during their migration and dissemination in various sites and niches. The brain is considered an immunological sanctuary site, and thus the safest place for metastasis establishment. The risk of brain metastases is highest in patients with melanoma, lung, or breast cancers. In the CNS, metastatic cancer cells exploit the activity of different non-tumoral cell types in the brain microenvironment to create a new niche and to support their proliferation and survival. Among these cells, microglia (the brain resident macrophages) display an exceptional role in immune surveillance and tumor clearance. However, upon recruitment to the metastatic site, depending on the microenvironment context and disease conditions, microglia might be turned into tumor-supportive or -unsupportive cells. Recent single-cell 'omic' analyses have contributed to clarify microglia functional and spatial heterogeneity during tumor development and metastasis formation in the CNS. This review summarizes findings on microglia heterogeneity from classical studies to the new single-cell omics. We discuss i) how microglia interact with metastatic cancer cells in the unique brain tumor microenvironment; ii) the microglia classical M1-M2 binary concept and its limitations; and iii) single-cell omic findings that help to understand human and mouse microglia heterogeneity (core sensomes) and to describe the multi-context-dependent microglia functions in metastases to the CNS. We then propose ways to exploit microglia plasticity for brain metastasis treatment depending on the microenvironment profile.

Publication types

  • Review

MeSH terms

  • Animals
  • Brain Neoplasms* / pathology
  • Central Nervous System / pathology
  • Humans
  • Macrophages / pathology
  • Mice
  • Microglia* / pathology
  • Tumor Microenvironment