Synthetic nanobodies as tools to distinguish IgG Fc glycoforms

Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2212658119. doi: 10.1073/pnas.2212658119. Epub 2022 Nov 21.

Abstract

Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.

Keywords: glycobiology; immunoglobulin; nanobody.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Humans
  • Immunoglobulin Fc Fragments / metabolism
  • Immunoglobulin G / metabolism
  • Polysaccharides / metabolism
  • SARS-CoV-2
  • Single-Domain Antibodies*

Substances

  • Immunoglobulin G
  • Single-Domain Antibodies
  • Immunoglobulin Fc Fragments
  • Polysaccharides