Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities

J Phys Chem Lett. 2022 Dec 1;13(47):10943-10951. doi: 10.1021/acs.jpclett.2c02707. Epub 2022 Nov 21.

Abstract

A general rate theory for resonance energy transfer (gRET) is formulated to incorporate any degrees of freedom (e.g., rotation, vibration, exciton, and polariton) as well as coherently coupled composite donor or acceptor states. The compact rate expression allows us to establish useful relationships: (i) detailed balance condition when the donor and acceptor are at the same temperature; (ii) proportionality to the product of dipole correlation tensors, which is not necessarily equivalent to spectral overlap; (iii) scaling with the effective coherent size, i.e., the number of coherently coupled molecules or modes; (iv) decomposition of collective rate in homogeneous systems into the monomer and coherence contributions such that the ratio of the two defines the quantum enhancement factor F; (v) spatial and orientational dependences as derived from the interaction potential. For the special case of exciton transfer, the general rate formalism reduces to FRET or its multichromophoric extension. When applied to cavity-assisted vibrational energy transfer between molecules or within a molecule, the general rate expression provides an intuitive explanation of intriguing phenomena such as cooperativity, resonance, and nonlinearity in the collective vibrational strong coupling (VSC) regime, as demonstrated in recent simulations. The relevance of gRET to cavity-catalyzed reactions and intramolecular vibrational redistribution is discussed and will lead to further theoretical developments.