Improvement of energy recovery potential of wet-refuse-derived fuel through bio-drying process

J Mater Cycles Waste Manag. 2023;25(2):637-649. doi: 10.1007/s10163-022-01545-z. Epub 2022 Nov 16.

Abstract

This paper proposes novel wet-refuse-derived fuel (Wet-RDF) bio-drying process with the variation of initial organic substrate and moisture content. The bio-drying was carried out using 0.3 m3 lysimeter aerated continuously at different rates. Two conditions of Wet-RDF feedstock tested included: Experiment A ‒ 37% organic substrate and 58% moisture content with an initial heating value of 2,889 kcal/kg; and Experiment B ‒ 28% organic substrate and 35% moisture content with an initial heating value of 4,174 kcal/kg. The bio-drying was performed in both experiments under negative ventilation mode and non-ventilation mode, the ventilation mode was set at the aeration rates of 0.2 m3/kg/day and 0.4 m3/kg/day. The results suggest that the optimum aeration rate was 0.4 m3/kg/day, achieving a 30% moisture reduction and a 60% heating value increase from their initial values. As a result, the improved wet-RDF qualified for the local cement industry's standard in terms of heating value.

Keywords: Bio-drying; Mechanical biological treatment; Municipal solid waste; RDF.