Covalent organic framework membranes for efficient separation of monovalent cations

Nat Commun. 2022 Nov 19;13(1):7123. doi: 10.1038/s41467-022-34849-7.

Abstract

Covalent organic frameworks (COF), with rigid, highly ordered and tunable structures, can actively manipulate the synergy of entropic selectivity and enthalpic selectivity, holding great potential as next-generation membrane materials for ion separations. Here, we demonstrated the efficient separation of monovalent cations by COF membrane. The channels of COF membrane are decorated with three different kinds of acid groups. A concept of confined cascade separation was proposed to elucidate the separation process. The channels of COF membrane comprised two kinds of domains, acid-domains and acid-free-domains. The acid-domains serve as confined stages, rendering high selectivity, while the acid-free-domains preserve the pristine channel size, rendering high permeation flux. A set of descriptors of stage properties were designed to elucidate their effect on selective ion transport behavior. The resulting COF membrane acquired high ion separation performances, with an actual selectivity of 4.2-4.7 for K+/Li+ binary mixtures and an ideal selectivity of ~13.7 for K+/Li+.