Serum metabolomic characterization in pigs in relation to birth weight category and neonatal nutrition

J Anim Sci. 2023 Jan 3:101:skac386. doi: 10.1093/jas/skac386.

Abstract

The objective of this study was to characterize developmental differences in low birth weight (LBW) and normal birth weight (NBW) piglets with or without pre-weaning nutrient restriction using serum metabolomic profile analysis. At farrowing, 112 piglets were identified as LBW (1.22 ± 0.28 kg) or NBW (1.70 ± 0.27 kg) and were randomly assigned to receive normal nutrition (NN) or restricted nutrition (RN) (6 h/day no suckling) from days 2 to 28 post farrow (n = 8 pigs/group). On day 28, piglets were weaned onto a common diet. Fasted blood samples were obtained on days 28 and 56 (n = 8 pigs/group) and were analyzed using quantitative metabolomics via a combination of direct injection mass spectrometry with a reverse-phase LC-MS/MS custom assay. Data were normalized using logarithmic transformation and auto-scaling. Partial least squares discriminant analysis (PLS-DA) was carried out to further explore the differential metabolites among the groups (metaboanalyst.ca) with an integrated enrichment and pathway topography analysis. On day 28, LBW piglets had lower levels of essential amino acids as well as reduced metabolites associated with fatty acid oxidation, glycolysis, and the tri-carboxylic acid (TCA) cycle compared to the NBW group. The overall reduction of metabolites associated with energy production and regulation suggests that LBW vs. NBW are in an energy-survival state. On day 56, LBW pigs had increased utilization of fatty acids and resultant ketone production, evident by increased carnitines, acetoacetate, β-hydroxybutyrate, and glycerol compared to NBW pigs. In addition, compared to the NBW pigs LBW pigs had a consistent decrease in serum glucose and lactate as well as reduced TCA cycle metabolites: pyruvate, succinate, citrate, and α-ketoglutaric acid similar to day 28. Low reliance on glycolysis and the TCA cycle and higher glycerol production in the LBW pigs may indicate impairments in glucose tolerance at 56 d. In summary, LBW piglets appear to have more metabolic alterations in early life, which is not resolved with adequate nutrition or refeeding and may elucidate physiological and metabolic mechanisms of poor growth and life performance compared to NBW pigs later in life.

Keywords: low birth weight; metabolomics; nutrition; piglets.

Plain language summary

The objective of this study was to characterize developmental differences in low birth weight (LBW) and normal birth weight (NBW) piglets with or without pre-weaning nutrient restriction using serum metabolomic profile analysis. Through the serum metabolite analysis, at weaning, we saw fewer metabolites associated with fatty acid oxidation, and glycolysis in the LBW pigs compared to the NBW, which suggests poor fatty acid and glucose metabolism in these piglets. After weaning, fatty acid metabolism is restored in both LBW and NBW piglets, but glucose and lactate levels remained lower in the LBW piglets, which may be indicative of impairment in glucose tolerance post-weaning. Therefore, in LBW piglets, poor metabolism of glucose at weaning could not be curtailed with nutrition intervention post-weaning.

Publication types

  • Randomized Controlled Trial, Veterinary

MeSH terms

  • Animals
  • Birth Weight / physiology
  • Chromatography, Liquid / veterinary
  • Glucose
  • Glycerol*
  • Swine
  • Tandem Mass Spectrometry* / veterinary

Substances

  • Glycerol
  • Glucose