Serum neurofilament light as a biomarker of vulnerability to a second mild traumatic brain injury

Transl Res. 2023 May:255:77-84. doi: 10.1016/j.trsl.2022.11.008. Epub 2022 Nov 17.

Abstract

A second mild traumatic brain injury (mTBI) sustained prior to neuropathological recovery can lead to exacerbated effects. Without objective indicators of this neuropathology, individuals may return to activities at risk of mTBI when their brain is still vulnerable. With axonal injury recognized as a neuropathological hallmark of mTBI, we hypothesized that serum levels of neurofilament light (NfL), a highly sensitive biomarker of axonal injury, may be predictive of vulnerability to worse outcomes in the event of a second mTBI. Given this hypothesis is difficult to test clinically, we used a two-hit model of mTBI in rats and staggered inter-injury intervals by 1-, 3-, 7-, or 14-days. Repeat-mTBI rats were dichotomized into NfLhigh (NfL>median at the time of re-injury) and NfLlow (NfL<median) groups, with behavior and NfL levels analyzed throughout the 28-days, followed by ex vivo diffusion tensor imaging. NfL levels at the time of the second mTBI were found to be predictive of vulnerability to re-injury, with NfLhigh rats displaying more neurological signs and a greater potentiation of NfL levels after the second mTBI. Importantly, this potentiation phenomenon remained even when limiting analyses to rats with longer inter-injury intervals, providing evidence that vulnerability to re-injury may not be exclusively dependent on inter-injury interval. Finally, NfL levels correlated with, and were predictive of, the severity of neurological signs following the second mTBI. These findings provide evidence that measurement of NfL during mTBI recovery may be reflective of the vulnerability to a second mTBI, and as such may have utility to assist return to sport, duty and work decisions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers
  • Brain / pathology
  • Brain Concussion* / pathology
  • Diffusion Tensor Imaging
  • Intermediate Filaments / pathology
  • Rats
  • Reinjuries*

Substances

  • Biomarkers