Differential endothelial hydrogen peroxide signaling via Nox isoforms: Critical roles for Rac1 and modulation by statins

Redox Biol. 2022 Dec:58:102539. doi: 10.1016/j.redox.2022.102539. Epub 2022 Nov 14.

Abstract

Statins have manifold protective effects on the cardiovascular system. In addition to lowering LDL cholesterol levels, statins also have antioxidant effects on cardiovascular tissues involving intracellular redox pathways that are incompletely understood. Inhibition of HMG-CoA reductase by statins not only modulates cholesterol synthesis, but also blocks the synthesis of lipids necessary for the post-translational modification of signaling proteins, including the GTPase Rac1. Here we studied the mechanisms whereby Rac1 and statins modulate the intracellular oxidant hydrogen peroxide (H2O2) via NADPH oxidase (Nox) isoforms. In live-cell imaging experiments using the H2O2 biosensor HyPer7, we observed robust H2O2 generation in human umbilical vein endothelial cells (HUVEC) following activation of cell surface receptors for histamine or vascular endothelial growth factor (VEGF). Both VEGF- and histamine-stimulated H2O2 responses were abrogated by siRNA-mediated knockdown of Rac1. VEGF responses required the Nox isoforms Nox2 and Nox4, while histamine-stimulated H2O2 signals are independent of Nox4 but still required Nox2. Endothelial H2O2 responses to both histamine and VEGF were completely inhibited by simvastatin. In resting endothelial cells, Rac1 is targeted to the cell membrane and cytoplasm, but simvastatin treatment promotes translocation of Rac1 to the cell nucleus. The effects of simvastatin both on receptor-dependent H2O2 production and Rac1 translocation are rescued by treatment of cells with mevalonic acid, which is the enzymatic product of the HMG-CoA reductase that is inhibited by statins. Taken together, these studies establish that receptor-modulated H2O2 responses to histamine and VEGF involve distinct Nox isoforms, both of which are completely dependent on Rac1 prenylation.

Keywords: Endothelial cells; NADPH oxidases; Oxidative stress; Rac1; Signal transduction; Statins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Histamine / pharmacology
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Hydrogen Peroxide / metabolism
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors* / pharmacology
  • NADPH Oxidases* / genetics
  • NADPH Oxidases* / metabolism
  • Protein Isoforms / metabolism
  • Simvastatin / pharmacology
  • Vascular Endothelial Growth Factor A / metabolism
  • rac1 GTP-Binding Protein / genetics
  • rac1 GTP-Binding Protein / metabolism

Substances

  • NADPH Oxidases
  • Hydrogen Peroxide
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Vascular Endothelial Growth Factor A
  • Histamine
  • Simvastatin
  • Protein Isoforms
  • rac1 GTP-Binding Protein
  • RAC1 protein, human