Recent progress of gene circuit designs in immune cell therapies

Cell Syst. 2022 Nov 16;13(11):864-873. doi: 10.1016/j.cels.2022.09.006.

Abstract

The success of chimeric antigen receptor (CAR) T cell therapy against hematological cancers has convincingly demonstrated the potential of using genetically engineered cells as therapeutic agents. Although much progress has been achieved in cell therapy, more beneficial capabilities have yet to be fully explored. One of the unique advantages afforded by cell therapies is the possibility to implement genetic control circuits, which enables diverse signal sensing and logical processing for optimal response in the complex tumor microenvironment. In this perspective, we will first outline design considerations for cell therapy control circuits that address clinical demands. We will compare and contrast key design features in some of the latest control circuits developments and conclude by discussing potential future directions.

Keywords: CAR; gene circuits; immune cell therapy; synthetic biology.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell- and Tissue-Based Therapy
  • Gene Regulatory Networks / genetics
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Chimeric Antigen* / genetics
  • T-Lymphocytes

Substances

  • Receptors, Chimeric Antigen
  • Receptors, Antigen, T-Cell