Changes in metabolism and vestibular function depend on gravitational load in mice

J Appl Physiol (1985). 2023 Jan 1;134(1):10-17. doi: 10.1152/japplphysiol.00555.2022. Epub 2022 Nov 17.

Abstract

The vestibular system is known to participate in controlling posture and metabolism. Different gravitational environments, including microgravity or hypergravity, cause plastic alteration of the vestibular system, and plasticity is important for adaptation to a novel gravitational environment. However, it is unclear whether the degree of change in vestibular-related physiological function depends on gravitational loading. To examine this, we used a hypergravity environment including 1.33 G, 1.67 G, and 2 G for 29 days. We found that a gravitational threshold induces physiological changes, including vestibular-related posture control and metabolism in mice. Body mass did not return to the preloading level in 1.67 G and 2 G mice. A significant drop in food intake, observed on the first day of hypergravity load, disappeared in all mice after longer exposure. However, a reduction in water intake was sustained in 2 G mice but not 1.33 G and 1.67 G mice. Body temperature did not return to the preloading level in 2 G mice by the final day. A decrease in the skill of the righting reflex was observed in 2 G mice but not 1.33 G and 1.67 G mice. In conclusion, this study showed that hypergravity-induced changes in metabolism and vestibular function depended on the amount of gravitational loading. The 2 G load affected vestibular-related posture control and metabolism considerably, compared with 1.33 G and 1.67 G loads.NEW & NOTEWORTHY It is unclear whether the degree of change in vestibular-related physiological function depends on gravitational loading. Present study showed that exposure to hypergravity-induced degrees of change in metabolism and vestibular function depended on the gravitational loading. The response of body mass depended on the gravitational loading size. Especially in 2 G environment, water intake, body temperature, and vestibular function were influenced. These changes could involve plastic alteration of vestibular-related autonomic and motor functions.

Keywords: activity; body temperature; food intake; gravity; water intake.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Adaptation, Physiological
  • Animals
  • Hypergravity*
  • Mice
  • Vestibule, Labyrinth* / physiology
  • Weightlessness*