Quantum Controlled Cold Scattering Challenges Theory

J Phys Chem Lett. 2022 Dec 1;13(47):10912-10917. doi: 10.1021/acs.jpclett.2c03038. Epub 2022 Nov 17.

Abstract

Our previous rotationally inelastic cold scattering experiments between state prepared D2 (v = 2, j = 2, m = 0) and He disagreed with theory, raising serious concerns about either our understanding of the anisotropic potential or the accuracy of the measurement. To further interrogate interactions between molecular hydrogen and atomic helium, we study the Δj = 1and Δj = 2 rotational relaxation of HD (v = 2, j = 2, m = 0) by collision with He. The two rotational transitions probe different anisotropic components of the van der Waals potential. Our state resolved scattering study shows that these two transitions are mediated by two different shape resonances l = 1 for Δj = 1 and l = 2 for Δj = 2. The strong l = 1 resonance dominates the Δj = 1 scattering, agreeing with theory. However, the dominance of the weaker l = 2 resonance in the Δj = 2 transition, which matches our earlier D2-He result, contradicts theoretical calculations. The continued contradiction, when we expect one-to-one correspondence between our stereodynamically controlled scattering experiment and theoretical calculations, makes us question the accuracy of the weaker anisotropic part of the H2-He interaction potential.

MeSH terms

  • Anisotropy
  • Hydrogen*
  • Vibration*

Substances

  • Hydrogen