Flow-Chemistry-Enabled Synthesis of 5-Diethylboryl-2,3'-bipyridine and Its Self-Assembly Dynamics

Chemistry. 2023 Feb 10;29(9):e202202882. doi: 10.1002/chem.202202882. Epub 2022 Dec 29.

Abstract

5-Diethylboryl-2,3'-bipyridine (1), which is inaccessible by conventional batch methods, was synthesized by using a flow microreactor. Compound 1 was obtained as an equilibrium mixture of a cyclic trimer and a cyclic tetramer in solution, the latter of which was crystallized in benzene by vapor diffusion of hexane at 7 °C. The dynamic nature of this system was confirmed by solvent- and concentration-dependent experiments. Notably, the dynamics was verified by using flow NMR spectroscopy, which revealed that the time required to reach equilibrium was influenced by the solvent ratio (<18 s, 24-28 s, and 34-42 s in 2 : 1, 1 : 1, and 1 : 2 mixtures of [D6 ]acetone and C6 D6 , respectively). Compound 1 and 3-[4'-(diethylboryl)phenyl]pyridine (2) exhibited different self-assembly behavior in solution and crystals. Density functional theory calculations suggested that this difference was largely due to enhanced planarity between two consecutive aromatic rings.

Keywords: DFT calculations; dynamics; flow chemistry; organoboranes; self-assembly.