Remediation of chlorinated aliphatic hydrocarbons (CAHs) contaminated site coupling groundwater recirculation well (IEG-GCW®) with a peripheral injection of soluble nutrient supplement (IEG-C-MIX) via multilevel-injection wells (IEG-MIW)

Heliyon. 2022 Nov 3;8(11):e11402. doi: 10.1016/j.heliyon.2022.e11402. eCollection 2022 Nov.

Abstract

An innovative Groundwater Circulation Well (GCW) process was configured, installed, and tested for optimizing the distribution of a soluble nutrient supplement in a heterogeneous aquifer for reductive dehalogenation. This generated an in-situ bioreactor for the enhanced treatment of chlorinated aliphatic hydrocarbons (CAHs). At a site in Barcelona, Spain, trichloroethylene (TCE) concentration was found in the source area to a maximum value of up to 170 mg/L, while the degradation products like 1,2-dichloroethylene (1,2-DCE) and vinyl chloride (VC) were detected in significantly lower concentrations or were even absent. The novel system combined a vertical recirculation well (IEG-GCW®) and four multilevel injection wells (IEG-MIWs) to introduce the carbon solution into the aquifer. A 12 m deep IEG-GCW® equipped with 2 screened sections were located in the center of the 4 IEG-MIWs. The GCW induced flow moves the groundwater in an ellipsoidal recirculation cell to spread the supplements from the central GCW and from the peripheral MIWs in the aquifer body. Two multilevel sampling wells (IEG-MLSWs®) in the radius of influence (ROI) monitor the remediation process to capture hydrochemical variations along the vertical aquifer sections. A multi-source model harmonizes geological and hydrochemical information during different remediation stages, guiding the adaptation of the remediation strategy to physicochemical conditions and unmasking the decontamination mechanics induced by the remedial actions. Hydrochemical monitoring of MLWS and the stable carbon isotopic signature of cis-1,2-DCE and VC show the mobilization of secondary contamination sources triggered by recirculation during remediation, the stimulation of microbiological activity following nutrient supplement via GCW and MIWs, and the strong decrease of CAHs concentrations at different aquifer levels. Evidence from the first application at the field scale reveals a significant increase in the chloroethane biodegradation rate and short-term effectiveness of the innovative remediation strategy. GCW-MIWs synergy represents a promising strategy to degrade CAHs in a shorter period through the combination of a controllable hydraulic system, effective nutrient distribution, and the monitoring of the remediation process.

Keywords: Biological reductive dechlorination; Chlorinated aliphatic hydrocarbons; Groundwater circulation well; Hydrogeochemical conceptual modeling; Nutrient injection; Remediation strategy.