Reassessing Fano Resonance for Broadband, High-Efficiency, and Ultrafast Terahertz Wave Switching

Adv Sci (Weinh). 2023 Jan;10(2):e2204494. doi: 10.1002/advs.202204494. Epub 2022 Nov 17.

Abstract

Miniaturized ultrafast switchable optical components with high efficiency and broadband response are in high demand to the development of optical imaging, sensing, and high-speed communication. Sharp Fano-type resonance switched by active materials is one of the key concepts that underpins the control of light in metaoptics with high sensitivity. However, actuating such metasurfaces exhibits a long-standing trade-off between modulation depth and operational bandwidth. Here, the limitations are circumvented by theoretical analysis, numerical simulation, and experimental realization of an achromatic Fano metasurface so that a high contrast of tunability with ultrafast switching rate over a broad range of frequency is achieved. By developing the physics of inter-mode coupling, the Fano metasurface is designed according to a complete phase diagram derived from coupled mode theory. Unlike conventional Fano metasurfaces, the cross-polarized inter-metaatoms coupling is discovered as a superior ability of high-efficiency broadband achromatic polarization conversion. To prove the ultrasensitive nature, a metadevice is constructed by incorporating a thin amorphous Ge layer with a weak photoconductivity perturbation. Transmission modulation over broadband frequency range from 0.6 to 1.1 THz is thus successfully realized, featuring its merits of modulation depth over 90% and On-Off-On switching cycle less than 10 ps.

Keywords: Fano resonance; near-field coupling; reconfigurable metasurfaces; terahertz switching; ultrafast photonics.