[Interannual variation of soil organic nitrogen fractions and its response to straw returning]

Ying Yong Sheng Tai Xue Bao. 2022 Oct;33(11):2963-2970. doi: 10.13287/j.1001-9332.202211.017.
[Article in Chinese]

Abstract

Elucidating the interannual variation of soil organic nitrogen fractions and its response to straw returning is of great significance for rational regulation of soil organic nitrogen pool and sustainable soil utilization. We conducted a field microcosm experiment with typic hapludoll soil at the National Field Observation and Research Station of Shenyang Agroecosystems. Three treatments were set, including nitrogen fertilizer addition (200 kg N·hm-2, the same in other treatments), nitrogen fertilizer addition with 50% straw return, and nitrogen fertilizer addition with 100% straw return. We classified soil organic nitrogen fractions in the 1st, 3rd, 6th, and 9th years of the experiment by using the Bremner acid hydrolysis method. The results showed that the content of amino acid nitrogen increased with the tillage years, with an increase rate of 39.8% compared with 1st year. The content of hydrolyzable unknown nitrogen increased by 10.8% compared with 1st year, which reached the highest in the 3rd year. The content of total soil nitrogen and other organic nitrogen fractions showed limited variation with tillage years. The proportion of hydrolyzable total nitrogen that is relatively easy to mineralize in the total soil nitrogen gradually increased with the tillage years, and that of relatively stable acid insoluble nitrogen to total soil nitrogen gradually decreased, indicating that soil nitrogen availability increased with the tillage years, which would facilitate the soil nitrogen supply capacity. Compared with the treatment without straw returning, adding straw improved soil total nitrogen and each hydrolyzable nitrogen contents, with such positive effect be stronger under the treatment with heavier straw returning. The effect of straw returning on hydrolyzable nitrogen fractions mainly occurred in the 6th and 9th years. The components of soil total nitrogen that have been increased were mainly the amino acid nitrogen and hydrolyzed unknown nitrogen, resulting in increased proportion of hydrolyzable nitrogen. Straw returning could increase soil nitrogen pool and improve soil nitrogen conservation and supply capacity.

阐明土壤有机氮组分的年际变化特征及其对秸秆还田的响应对合理调控土壤有机氮库和土壤可持续利用具有重要意义。在沈阳农田生态系统国家野外科学观测研究站进行田间微区试验(土壤类型为潮棕壤),设置单施氮肥(200 kg N·hm-2,下同)、50%秸秆还田配施氮肥和100%秸秆还田配施氮肥3个处理,采用Bremner酸水解法对试验第1、3、6、9年的土壤有机氮组分进行分级。结果表明: 氨基酸态氮含量随着耕作年限的增加逐渐提升,提升幅度为39.8%;酸解未知态氮含量提升幅度为10.8%,且在第3年时最高;土壤总氮和其他有机氮组分含量随耕作年限变化不大。相对容易矿化的酸解总氮占土壤总氮的比例随耕作年限的增加逐渐增加,比较稳定的未酸解态氮占土壤总氮的比例随耕作年限的增加逐渐下降,说明随着耕作年限的增加土壤氮素有效性提高,土壤供氮能力增强。与单施氮肥相比,加入秸秆提高了土壤总氮和各酸解态氮含量,秸秆还田量越多,提升效果越明显。秸秆还田对酸解态氮组分的影响主要发生在试验第6、9年,增加的土壤总氮主要为氨基酸态氮和酸解未知态氮,从而提高了土壤中酸解态氮占土壤总氮的比例。秸秆还田能够提升土壤氮库容,提高土壤保氮供氮能力。.

Keywords: fertilizer application; interannual variation; soil organic nitrogen fraction; straw returning.

Publication types

  • English Abstract

MeSH terms

  • Agriculture / methods
  • Amino Acids
  • Fertilizers
  • Nitrogen* / analysis
  • Soil* / chemistry

Substances

  • Soil
  • Nitrogen
  • Fertilizers
  • Amino Acids