[Developing biomass estimation models of young trees in typical plantation on the Qinghai-Tibet Plateau, China]

Ying Yong Sheng Tai Xue Bao. 2022 Oct;33(11):2923-2935. doi: 10.13287/j.1001-9332.202211.009.
[Article in Chinese]

Abstract

Calculation of forest biomass is the basis for global carbon stock estimation, which has been included in national forest inventory projects. The volume-derived biomass method is generally used for trees with diameter at breast height (DBH) larger than 5 cm in most forest carbon sink measurement, which omits young trees (diameter at breast height <6 cm, height >0.3 m) and thus may underestimate ecosystem carbon sink capacity. Based on the biomass data of 137 young trees in five typical plantations on the Tibetan Plateau, independent biomass models were developed using the weighted generalized least squares method, with basic diameter as the predictor instead of DBH. Additive biomass models of controlling directly by proportion functions and controlling by the sum of equations were selected. Additive biomass models for the whole plant and each component were developed by applying weighted nonlinear seemingly uncorrelated regression. The results showed that the binary additive biomass model (R2 reached 0.90-0.99) performed better than the monadic biomass models and independent biomass models for the estimation of total biomass. For different tree species, two forms of the additive models had their own advantages, with neglectable difference in accuracy. From the perspective of forestry production, models of controlling directly by proportion functions were more practical. From the perspective of predictors extraction by remote sensing technology, suitable young tree biomass models were developed for remote sensing estimation. In this study, the additive model had high overall fitting accuracy and could accurately estimate the whole plant and component biomass of young trees in similar climatic environments.

森林生物量计算是全球碳储量估算的基础,现已纳入全球国家森林清单项目。普遍的森林碳汇计量采用的材积源生物量法针对胸径5 cm以上的树木,幼树(胸径<6 cm,树高>0.3 m)的碳汇量并未被完整计入其中,导致生态系统碳汇能力被低估。基于青藏高原137株5种典型人工林幼树的实测生物量数据,以地径代替胸径作为预测变量,采用加权广义最小二乘法建立独立生物量模型,选择比例总量直接控制及代数和控制2种结构形式的相容性生物量模型,并通过加权非线性似乎不相关回归进行方程组估算,建立了整株及各组分的相容性生物量方程。结果表明: 二元相容性模型优于一元以及独立模型,对整株生物量来说,R2达到0.90~0.99,两种相容性模型对于不同树种来说各有优势但精度差距可以忽略,从林业生产实践角度考虑,比例总量直接控制生物量模型更有实践意义,从遥感技术的变量提取角度考虑,本研究构建了更适于遥感估算的幼树生物量模型,其整体上拟合精度高,可以准确地进行类似气候环境中的幼树整株和各组分生物量的估算。.

Keywords: additive model; basic diameter; biomass; independent model; young tree.

Publication types

  • English Abstract

MeSH terms

  • Biomass
  • China
  • Ecosystem*
  • Tibet
  • Trees*