[Simulation of carbon sequestration and timber production in Larix olgensis plantation based on CO2FIX model]

Ying Yong Sheng Tai Xue Bao. 2022 Oct;33(10):2653-2662. doi: 10.13287/j.1001-9332.202210.009.
[Article in Chinese]

Abstract

Based on datasets from plot survey and bibliographic of Larix olgensis plantations in Maoer Mountain, the CO2FIX model was used to quantitatively simulate the effects of different rotations (30, 40, 50, 60 years), site indices (12, 16, 20 m), and initial densities (2500, 3333, 4444 trees·hm-2) on the stand level carbon flows among different carbon pools (i.e., biomass carbon pool, soil carbon pool, and product carbon pool). The results showed that the CO2FIX model had high reliability for simulating the processes of L. olgensis plantation, with the average relative errors of stand biomass and volume between analog and measured values being 6.4% and 3.7%. Under the baseline conditions of initial density of 3333 trees·hm-2, site index of 16 m and rotation of 40 years, the carbon stock of total and sub-pool of L. olgensis plantation changed periodically with rotation. The total stand carbon stock and volume for L. olgensis plantation increased with the extension of rotation, the improvement of site index, and the increase of initial density. The stand carbon stock and volume would be increased by 12.2% and 31.2%, 36.7% and 67.8%, respectively, when the reference rotation was correspondingly extended by 10 and 20 years. However, if the reference rotation was shortened by 10 years, stand carbon stock and volume would be correspondingly decreased by 20.9% and 40.4%, respectively. When the initial density was set as 3333 and 4444 trees·hm-2, stand carbon stock and volume were increased by 27.8% and 50.9%, 27.4% and 49.1%, respectively. When the site index was under the range of 12 to 20 m, stand carbon stock and volume could be increased by 36.0% and 40.3%, 39.3% and 44.2%, respectively, with each increase of 4 m in site index. During one rotation, 271.57 t C per hectare could be fixed into L. olgensis plantation. At the end round of the rotation, 27.47 and 56.75 t C were transferred to soil and wood product carbon pools. Therefore, when the site condition was good, the management model with a higher initial density (4444 trees·hm-2) and longer rotation (60 years) would be more beneficial to maximizing the carbon sink and timber benefits of L. olgensis plantation.

本研究以帽儿山地区长白落叶松人工林为对象,基于样地调查和文献数据,利用CO2FIX模型定量模拟轮伐期(30、40、50、60年)、立地指数(12、16、20 m)和初植密度(2500、3333、4444 株·hm-2)对长白落叶松人工林碳平衡过程的影响,并构建林分尺度下生物量碳库、土壤碳库和林产品碳库之间的碳流通过程。结果表明: CO2FIX模型对帽儿山地区长白落叶松人工林生物量和蓄积量的生长过程模拟结果具有较高的可靠性,模拟值和实测值平均相对误差分别为6.4%和3.7%。在初植密度3333 株·hm-2、立地指数16 m、轮伐期40年的基准条件下,长白落叶松人工林总碳储量及各碳库碳储量均随轮伐期呈周期性变化。林分总碳储量和蓄积量均随轮伐期的延长、立地指数的提升和初植密度的增加而增加。当轮伐期分别延长10年和20年时,林分碳储量分别增加12.2%和31.2%,林分蓄积增加36.7%和67.8%;而当轮伐期缩短10年时,林分碳储量和蓄积量则分别降低20.9%和40.4%。与初植密度2500 株·hm-2相比,初植密度为3333和4444 株·hm-2时,林分碳储量增长率分别为27.8%和50.9%,蓄积量增长率分别为27.4%和49.1%。当立地指数在12~20 m范围时,每提高4 m,林分碳储量增长36.0%、40.3%,蓄积量增长39.3%、44.2%。在一个轮伐期内,每公顷长白落叶松人工林可固定约271.57 t C;当轮伐期结束时,约有27.47和56.75 t C流转到土壤和木材产品碳库中。因此,当立地条件较好时,采用较高初植密度(4444 株·hm-2)和较长轮伐期(60年)的管理模式更有利于长白落叶松人工林碳汇和木材效益的最大化。.

Keywords: Larix olgensis; CO 2 FIX model; carbon stock; initial density; site condition.

Publication types

  • English Abstract

MeSH terms

  • Carbon
  • Carbon Sequestration*
  • Larix*
  • Reproducibility of Results
  • Soil
  • Trees

Substances

  • Carbon
  • Soil