Hybrid Catalyst Coupling Single-Atom Ni and Nanoscale Cu for Efficient CO2 Electroreduction to Ethylene

J Am Chem Soc. 2022 Nov 16;144(45):20931-20938. doi: 10.1021/jacs.2c09773. Epub 2022 Nov 3.

Abstract

A hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene (C2H4) production efficiency in the electrocatalytic CO2 reduction reaction (eCO2RR). The single-atom Ni anchored on high-surface-area ordered mesoporous carbon enables high-rate and selective conversion of CO2 to CO in a wide potential range, which complements the subsequent CO enrichment on Cu nanowires (NWs) for the C-C coupling to C2H4. In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) confirms the substantially improved CO enrichment on Cu, once the incorporation of single-atom Ni occurs. Also, in situ X-ray absorption near-edge structure (XANES) demonstrates the structural stability of the hybrid catalyst during eCO2RR. By modulating hybrid compositions, the optimized catalyst shows 66% Faradaic efficiency (FE) in an alkaline flow cell with over 100 mA·cm-2 at -0.5 V versus reversible hydrogen electrode, leading to a five-order enhancement in C2H4 selectivity compared with single-component Cu NWs.