Validation of suitable reference genes by various algorithms for gene expression analysis in Isodon rubescens under different abiotic stresses

Sci Rep. 2022 Nov 15;12(1):19599. doi: 10.1038/s41598-022-22397-5.

Abstract

Isodon rubescens (Hemsley) H. Hara (Lamiaceae) is a traditional Chinese medicine plant that has been used to treat various human diseases. Oridonin is one of the main active ingredients, and the route of its molecular biosynthesis remains to be determined. The study of gene expression patterns can provide clues toward the understanding of its biological functions. The selection of suitable reference genes for normalizing target gene expression is the first steps in any quantitative real-time PCR (RT-qPCR) gene expression study. Therefore, validation of suitable reference genes is necessary for obtaining reliable results in RT-qPCR analyses of I. rubescens. Here, 12 candidate reference genes were chosen, and their expression stability in different tissues of I. rubescens and in leaves under different abiotic stresses (NaCl, dehydration, SA, MeJA, and ABA) was evaluated using the ∆Ct, NormFinder, GeNorm, BestKeeper, and RankAggreg statistical tools. Analysis using the comprehensive tools of RankAggreg algorithm showed that GADPH, 18S and eIF were stably expressed in different tissues; UBQ, Apt, and HIS; Cycl, UBQ, and PP2A; GADPH, 18S, and eIF; eIF, UBQ, and PP2A; TUB, Cycl, and UBQ; were the best three candidate reference genes for the samples of Dehydration, NaCl, SA, MeJA, and ABA treatment, respectively. While for the concatenated sets of ND (NaCl and dehydration) and SMA (SA, MeJA, and ABA), UBQ, HIS, and TUA; UBQ, eIF and Apt were the three appropriate candidate reference genes, respectively. In addition, the expression patterns of HMGR in different tissues and under different treatments were used to confirm the reliability of the selected reference genes, indicating that the use of an inappropriate reference gene as the internal control will cause results with a large deviation. This work is the first study on the expression stability of reference genes in I. rubescens and will be particularly useful for gene functional research in this species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Dehydration / genetics
  • Gene Expression
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Plant
  • Genes, Plant*
  • Humans
  • Isodon*
  • Real-Time Polymerase Chain Reaction / methods
  • Reference Standards
  • Reproducibility of Results
  • Sodium Chloride
  • Stress, Physiological / genetics

Substances

  • Sodium Chloride
  • APT