Facile Synthesis of Weakly Ferromagnetic Organogadolinium Macrochelates-Based T1 -Weighted Magnetic Resonance Imaging Contrast Agents

Adv Sci (Weinh). 2022 Nov 15;10(1):e2205109. doi: 10.1002/advs.202205109. Online ahead of print.

Abstract

To surmount the major concerns of commercial small molecule Gd chelates and reported Gd-based contrast agents (GBCAs) for magnetic resonance imaging (MRI), a new concept of organogadolinium macrochelates (OGMCs) constructed from the coordination between Gd3+ and macromolecules is proposed. A library of macromolecules were screened for Gd3+ coordination, and two candidates [i.e., poly(acrylic acid) (PAA), and poly(aspartic acid) (PASP)] succeeded in OGMC formation. Under optimized synthesis conditions, both Gd-PAA12 and Gd-PASP11 OGMCs are outstanding T1 -weighted CAs owing to their super high r1 values (> 50 mm-1 s-1 , 3.0 T) and ultralow r2 /r1 ratios (< 1.6, 3.0 T). The ferromagnetism of OGMCs is completely different from the paramagnetism of commercial and reported GBCAs. The ferromagnetism is very weak (Ms < 1.0 emu g-1 ) leading to a low r2 , which is preferred for T1 MRI. Gd3+ is not released from the OGMC Gd-PAA12 and Gd-PASP11, ensuring biosafety for in vivo applications. The safety and T1 -weighted MRI efficiencies of the OGMC Gd-PAA12 and Gd-PASP11 are tested in cells and mice. The synthesis method of the OGMCs is facile and easy to be scaled up. Consequently, the OGMC Gd-PAA12 and Gd-PASP11 are superior T1 -weighted CAs with promising translatability to replace the commercial Gd chelates.

Keywords: hundred-gram-scale facile synthesis; magnetic resonance imaging (MRI) contrast agents (CAs); organogadolinium macrochelates (OGMCs); outstanding relaxivities; weak ferromagnetism.