Augmented O-GlcNAcylation exacerbates right ventricular dysfunction and remodeling via enhancement of hypertrophy, mitophagy, and fibrosis in mice exposed to long-term intermittent hypoxia

Hypertens Res. 2023 Mar;46(3):667-678. doi: 10.1038/s41440-022-01088-8. Epub 2022 Nov 14.

Abstract

Previously, we showed that augmented O-linked N-acetylglucosaminylation (O-GlcNAcylation) mitigates cardiac remodeling in O-GlcNAc transferase-transgenic (Ogt-Tg) mice exposed to acute (2-week) intermittent hypoxia (IH) by suppressing nuclear factor of activated T cells (NFAT) and nuclear factor kappa B (NF-κB) via the O-GlcNAcylation of glycogen synthase kinase 3 beta (GSK-3β) and NF-κB p65. Because this effect is time dependent, we exposed Ogt-Tg mice to IH for 4 weeks (IH4W) in the present study. O-GlcNAcylation was significantly enhanced in Ogt-Tg mice vs. wild-type (WT) mice exposed to normoxia and IH4W. Total O-GlcNAcylation levels were significantly increased in WT and Ogt-Tg mice after IH4W vs. normoxia. After IH4W, Ogt-Tg mice displayed significantly exacerbated signs of cardiac hypertrophy and fibrosis in the right ventricles (RVs) but not the left ventricles (LVs). Echocardiography revealed IH4W-induced right ventricular dysfunction. Phosphorylated GSK-3β levels were increased in Ogt-Tg mice vs. WT mice after IH4W, whereas phosphorylated NF-κB p65 levels were unaffected. Mitophagy, which is associated with cardiac dysfunction, was increased in the RVs of Ogt-Tg mice after IH4W. Furthermore, the levels of phosphorylated dynamin-related protein 1 (p-Drp1) were significantly increased, and the expression of mitofusin-2 (MFN2) was significantly decreased. In human embryonic kidney cells, mitochondrial uncoupler-induced mitochondrial dysfunction was accelerated in Ogt-overexpressing cells. In addition to increasing the levels of phosphorylated Smad2, IH4W promoted cardiac fibrosis in the RVs of Ogt-Tg mice. Thus, augmented O-GlcNAcylation may aggravate IH4W-induced right ventricular dysfunction and remodeling by promoting hypertrophy, mitophagy, and fibrosis via GSK-3β inactivation, an increased p-Drp-1/MFN2 ratio, and Smad2 activation, respectively.

Keywords: Cardiac remodeling; Intermittent hypoxia; O-GlcNAcylation.

MeSH terms

  • Animals
  • Cardiomegaly
  • Fibrosis
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Hypoxia
  • Mice
  • Mice, Transgenic
  • Mitophagy
  • NF-kappa B* / metabolism
  • Ventricular Dysfunction, Right*

Substances

  • NF-kappa B
  • Glycogen Synthase Kinase 3 beta