Deep learning-based detection algorithm for brain metastases on black blood imaging

Sci Rep. 2022 Nov 14;12(1):19503. doi: 10.1038/s41598-022-23687-8.

Abstract

Brain metastases (BM) are the most common intracranial tumors, and their prevalence is increasing. High-resolution black-blood (BB) imaging was used to complement the conventional contrast-enhanced 3D gradient-echo imaging to detect BM. In this study, we propose an efficient deep learning algorithm (DLA) for BM detection in BB imaging with contrast enhancement scans, and assess the efficacy of an automatic detection algorithm for BM. A total of 113 BM participants with 585 metastases were included in the training cohort for five-fold cross-validation. The You Only Look Once (YOLO) V2 network was trained with 3D BB sampling perfection with application-optimized contrasts using different flip angle evolution (SPACE) images to investigate the BM detection. For the observer performance, two board-certified radiologists and two second-year radiology residents detected the BM and recorded the reading time. For the training cohort, the overall performance of the five-fold cross-validation was 87.95%, 24.82%, 19.35%, 14.48, and 18.40 for sensitivity, precision, F1-Score, the false positive average for the BM dataset, and the false positive average for the normal individual dataset, respectively. For the comparison of reading time with and without DLA, the average reading time was reduced by 20.86% in the range of 15.22-25.77%. The proposed method has the potential to detect BM with a high sensitivity and has a limited number of false positives using BB imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain Neoplasms* / secondary
  • Deep Learning*
  • Humans
  • Imaging, Three-Dimensional / methods
  • Magnetic Resonance Imaging / methods