Zwitterionic fluorinated detergents: From design to membrane protein applications

Biochimie. 2023 Feb:205:40-52. doi: 10.1016/j.biochi.2022.11.003. Epub 2022 Nov 11.

Abstract

We report herein the synthesis of zwitterionic sulfobetaine (SB) and dimethylamine oxide (AO) detergents whose alkyl chain is made of either a perfluorohexyl (F6H3) or a perfluoropentyl (F5H5) group linked to a hydrogenated spacer arm. In aqueous solution, the critical micellar concentrations (CMCs) measured by surface tensiometry (SFT) and isothermal titration calorimetry (ITC) were found in the millimolar range (1.3-2.4 mM). The morphologies of the aggregates were evaluated by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), demonstrating that the two perfluoropentyl derivatives formed small micelles less than 10 nm in diameter, whereas the perfluorohexyl derivatives formed larger and more heterogeneous micelles. The two SB detergents were able to solubilize synthetic lipid vesicles in a few hours; by contrast, the perfluoropentyl AO induced much faster solubilization, whereas the perfluorohexyl AO did not show any solubilization. All detergents were tested for their abilities to stabilize three membrane proteins, namely, bacteriorhodopsin (bR), the Bacillus subtilis ABC transporter BmrA, and the Streptococcus pneumoniae enzyme SpNOX. The SB detergents outperformed the AO derivatives as well as their hydrogenated analogs in stabilizing these proteins. Among the four new compounds, F5H5SB combines many desirable properties for membrane-protein study, as it is a powerful yet gentle detergent.

MeSH terms

  • Detergents* / chemistry
  • Membrane Proteins / chemistry
  • Micelles*
  • Scattering, Small Angle
  • X-Ray Diffraction

Substances

  • Detergents
  • Micelles
  • Membrane Proteins