Impact of COVID-19 restrictions on the dry deposition fraction of settleable particulate matter at three industrial urban/suburban locations in northern Spain

Atmos Environ (1994). 2022 Sep 1:284:119216. doi: 10.1016/j.atmosenv.2022.119216. Epub 2022 May 31.

Abstract

Ninety 24-h samples of the dry deposition fraction of settleable particulate matter (DSPM) were collected at one suburban industrial site ('EMA') and two urban industrial sites ('Lauredal' and 'Laboratory') in the western area of Gijón (North of Spain) from December 2019 to June 2020. The levels registered point to an environmental issue that should receive close attention from environmental authorities. Before lockdown restrictions due to COVID-19 were established, all samples collected at the EMA site exceeded 300 mg·m-2·d-1 (the Spanish limit value until 2002). Large amounts of DSPM were also registered at the Lauredal and Laboratory sites, maximum levels reaching 1039.2 and 672.7 mg·m-2·d-1, respectively. Seven metals were analysed in DSPM samples: Al, Ca, Fe, K, Mg, Mn and Na. Fe reached the highest values: 2473.4, 463.4 and 293.3 mg·m-2·d-1 (EMA, Lauredal and Laboratory sites, respectively). This study quantifies the reductions in the DSPM levels registered (on average, 97.2, 73.5 and 90.5% at the EMA, Lauredal and Laboratory sites, respectively) during the lockdown, which involved the restriction of population mobility and industrial activity. The influence of wind speed and its direction were also assessed to better understand the role of these restrictions in the observed reductions. The concentrations of all the metals in the DSPM were reduced by more than 75%, on average, except for K at the Laboratory and Lauredal sites. These decreases were much higher than those found by other authors for smaller fractions of the atmospheric particulate matter (PM10, PM2.5). The findings of the present study highlight the importance of DSPM in highly industrialized urban/suburban locations and indicate the direction that legal measures might take, given the influence of anthropogenic emissions.

Keywords: Air quality; Atmospheric dry deposition; Lockdown; Meteorology; Wind direction.