Design and synthesis of NiCo-NiCoO2@C composites with improved lithium storage performance as the anode materials

J Colloid Interface Sci. 2023 Feb;631(Pt A):112-121. doi: 10.1016/j.jcis.2022.10.158. Epub 2022 Nov 4.

Abstract

The rapid capacity decay severely limits the commercial applications of metal oxide-based electrodes. Exploring innovative materials with enhanced lithium storage performance is urgent and challenging. Herein, we propose a strategy for the synthesis of NiCo-NiCoO2@C composites using layered double hydroxide (LDH) precursors. When used as the anode materials, the composites deliver enhanced capacity throughout the continuous charge-discharge process. In our design, the electrochemically active NiCoO2 nanoparticles pulverize the NiCo phases via a conversion reaction. The NiCo phases can increase capacity by reacting with the Li2O yielded from the conversion of NiCoO2 and participating in the reversible transformation of solid-electrolyte interface (SEI) films, thus ensuring fast charge transfer. Voids that appear with the consumption of NiCo phases can provide abundant channels for Li+ transportation. Carbon matrices can effectively alleviate the stress generated during repeated cycles of expansion and shrinkage. Benefiting from these features, NiCo-NiCoO2@C anode delivers a highly enhanced reversible capacity of 961.6 mAh g-1 after 300 cycles at 200 mA g-1. This LDH-based strategy may be extended to the design and synthesis of various enhanced anode materials for lithium-ion batteries (LIBs).

Keywords: Carbon; Enhanced capacity; Layered double hydroxide precursors; Lithium-ion batteries; Metal oxides; NiCoO(2).