Balancing Activity and Stability in Spinel Cobalt Oxides through Geometrical Sites Occupation towards Efficient Electrocatalytic Oxygen Evolution

Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202214600. doi: 10.1002/anie.202214600. Epub 2022 Dec 8.

Abstract

Designing active and stable oxygen evolution reaction (OER) catalysts are vitally important to various energy conversion devices. Herein, we introduce elements Ni and Mn into (Co)tet (Co2 )oct O4 nanosheets (NSs) at fixed geometrical sites, including Mnoct , Nioct , and Nitet , to optimize the initial geometrical structure and modulate the CoCo2 O4 surface from oxygen-excess to oxygen-deficiency. The pristine (Ni,Mn)-(Co)tet (Co2 )oct O4 NSs shows excellent OER activity with an overpotential of 281.6 mV at a current density of 10 mA cm-2 . Moreover, without damaging their initial activity, the activated (Act)-(Ni,Mn)-(Co)tet (Co2 )oct O4 NSs after surface reconstruction exhibit long-term stability of 100 h under 10 mA cm-2 , 50 mA cm-2 , or even 100 mA cm-2 . The optimal balance between electroactivity and stability leads to remarkable OER performances, providing a pivotal guideline for designing ideal electrocatalysts and inspiring more works to focus on the dynamic change of each occupation site component.

Keywords: OER; decoupled proton-electron transfer; geometrical site occupation; surface reconstruction; well-balanced performance.