Different Radial Modification Profiles Observed on APPJ-Treated Polypropylene Surfaces according to the Distance between Plasma Outlet and Target

Polymers (Basel). 2022 Oct 26;14(21):4524. doi: 10.3390/polym14214524.

Abstract

The plasma jet transfer technique relies on a conductive wire at floating potential, which, upon entering in contact with a primary discharge, is capable of igniting a small plasma plume at the distal end of a long flexible plastic tube. In this work, two different long tube configurations were employed for the surface modification of polypropylene (PP) samples using argon as the working gas. One of the jet configurations has a thin copper (Cu) wire, which was installed inside the long tube. In the other configuration, the floating electrode is a metallic mesh placed between two plastic tubes in a coaxial arrangement. In the first case, the tip of the Cu wire is in direct contact with the working gas at the plasma outlet, whereas, in the second, the inner plastic tube provides an additional dielectric barrier that prevents the conductor from being in contact with the gas. Water contact angle (WCA) measurements on treated PP samples revealed that different surface modification radial profiles are formed when the distance (d) between the plasma outlet and target is changed. Moreover, it was found that the highest WCA reduction does not always occur at the point where the plasma impinges the surface of the material, especially when the d value is small. Through X-ray photoelectron spectroscopy (XPS) analysis, it was confirmed that the WCA values are directly linked to the oxygen-functional groups formed on the PP surfaces after the plasma treatment. An analysis of the WCA measurements along the surface, as well as their temporal evolution, together with the XPS data, suggest that, when the treatment is performed at small d values, the plasma jet removes some functional groups at the point where the plasma hits the surface, thus leading to peculiar WCA profiles.

Keywords: DBD plasma; plasma jets; plasma treatment; polymer treatment; transferred plasma.