Ethyl Methane Sulfonate and Sodium Azide-Mediated Chemical and X-ray-Mediated Physical Mutagenesis Positively Regulate Peroxidase 1 Gene Activity and Biosynthesis of Antineoplastic Vinblastine in Catharanthus roseus

Plants (Basel). 2022 Oct 28;11(21):2885. doi: 10.3390/plants11212885.

Abstract

Catharanthus roseus synthesizes bioactive therapeutic metabolites, known as monoterpenoid indole alkaloids (MIAs), including antineoplastic vinblastine and vincristine, which have high global demand, and antihypertensive ajmalicine, a serpentine. However, the in planta biosynthesis and accumulation of these phytopharmaceuticals are very low, attributed to their high cytotoxicity in the plant. Considering the low in planta concentration and over-harvesting of plant resources, biotechnological interventions have been undertaken to enhance the production of MIAs in plant systems. The present study was carried out to mutation through chemical and physical mutagenesis with sodium azide, ethyl methane sulfonate and X-rays, respectively, on C. roseus to determine their possible effects on the transcriptional modulation of MIA biosynthetic pathways in planta. The chemical mutagenesis resulted in delayed seed pod development in mutated C. roseus plants, with distinct leaf morphology and flower color. However, X-ray mutagenesis resulted in pollen-less sterile flowers. An HPLC analysis confirmed the higher catharanthine, vindoline and vinblastine content in sodium azide and X-ray mutants, and was further supported by higher PRX1 transcript levels estimated through real-time PCR analysis. The transcription factors WRKY1 and ORCA2 were found negatively regulated along with major MIA pathway genes in chemical mutants and their M1 generation, but showed positive regulation in X-ray M0 mutants. The induced mutagenesis of C. roseus provides a prospective strategy to modulate plant transcriptomes and enhance the biosynthesis of pharmaceutically important antineoplastic vinblastine in the plant.

Keywords: Catharanthus roseus; PRX1; chemical mutagenesis; ethyl methane sulfonate; monoterpenoid indole alkaloids; sodium azide.