Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota

Nutrients. 2022 Nov 2;14(21):4611. doi: 10.3390/nu14214611.

Abstract

Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE®, Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production.

Keywords: digestive sensations; gut microbiota; intestinal gas; metabolomics; metagenomics; prebiotic; resistant dextrin.

MeSH terms

  • Dextrins* / pharmacology
  • Feces
  • Homeostasis
  • Humans
  • Intestines
  • Microbiota*
  • Prebiotics

Substances

  • Dextrins
  • Prebiotics