Numerical Analysis of the Effect of Nanoparticles Size and Shape on the Efficiency of a Micro Heatsink

Nanomaterials (Basel). 2022 Oct 30;12(21):3836. doi: 10.3390/nano12213836.

Abstract

In this paper, two novel micro heat sinks (MHSs) were designed and subjected to thermal analysis using a numerical method. The fluid used was Boehmite alumina-water nanofluid (NFs) with high volume fractions (VOFs). Studies were conducted to determine the influence of a variety of nanoparticle (NP) shapes, such as platelet brick, blade, cylinder, and Os. The heatsink (HS) was made of copper, and the NFs entered it through the middle and exited via four outlets at the side of the HS. The finite element method was used to simulate the NFs flow and heat transfer in the HSs. For this purpose, Multi Physics COMSOL software was used. The maximum and middle values of HS temperature (T-MAX and T-Mid), thermal resistance (TH-R), heat transfer coefficient (h), FOM, etc., were studied for different NP shapes, and with Reynolds numbers (Re) of 300, 1000, and 1700, and VOFs of 0, 3, and 6%. One of the important outcomes of this work was the better thermal efficiency of the HS with rectangular fins. Moreover, it was discovered that a rise in Re increased the heat transfer. In general, adding NPs with high VOFs to MHSs is not appropriate in terms of heat. The Os shape was the best NP shape, and the platelet shape was the worst NP shape for high NPVOF. When NPs were added to an MHS, the temperature of the MHS dropped by an average of 2.8 or 2.19 K, depending on the form of the pin-fins contained inside the MHS (circular or square). The addition of NPs in the MHS with circular and square pin-fins enhanced the pressure drop by 13.5% and 13.3%, respectively, when the Re = 1700.

Keywords: economy; efficiency; micro heat sink; nanoparticle shape.

Grants and funding

The Deanship of Scientific Research at Najran University for funding this work under the National Research Priorities funding program grant code (NU/NRP/SERC/11/20).