The pH Influence on the Water-Splitting Electrocatalytic Activity of Graphite Electrodes Modified with Symmetrically Substituted Metalloporphyrins

Nanomaterials (Basel). 2022 Oct 27;12(21):3788. doi: 10.3390/nano12213788.

Abstract

Hydrogen, considered to be an alternative fuel to traditional fossil fuels, can be generated by splitting water molecules into hydrogen and oxygen via the use of electrical energy, in a process whose efficiency depends directly on the employed catalytic material. The current study takes part in the relentless search for suitable and low-cost catalysts relevant to the water-splitting field by investigating the electrocatalytic properties of the O2 and H2 evolution reactions (OER and HER) of two metalloporphyrins: Zn(II) 5,10,15,20-tetrakis(4-pyridyl)-porphyrin and Co(II) 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The TEM/STEM characterisation of the porphyrin samples obtained using different organic solvents revealed several types of self-assembled aggregates. The HER and OER experiments performed on porphyrin-modified graphite electrodes in media with different pH values revealed the most electrocatalytically active specimens. For the OER, this specimen was the electrode manufactured with one layer of Co-porphyrin applied from dimethylsulfoxide, exhibiting an overpotential of 0.51 V at i = 10 mA/cm2 and a Tafel slope of 0.27 V/dec. For the HER, it was the sample obtained by drop casting one layer of Zn-porphyrin from N,N-dimethylformamide that displayed a HER overpotential of 0.52 V at i = -10 mA/cm2 and a Tafel slope of 0.15 V/dec.

Keywords: aggregates; electrocatalysis; electron microscopy; metalloporphyrins; water splitting.