Chemical Profiling and Biological Activity of Extracts from Nine Norwegian Medicinal and Aromatic Plants

Molecules. 2022 Oct 28;27(21):7335. doi: 10.3390/molecules27217335.

Abstract

There is an increased interest in identifying beneficial compounds of plant origin that can be added to animal diets to improve animal performance and have a health-promoting effect. In the present study, nine herb species of the Norwegian wild flora or which can be cultivated in Norway were selected for phytogenic evaluation (hops, maral root, mint, oregano, purslane, rosemary, roseroot, sweet wormwood, yarrow). Dried herbs were sequentially extracted with dichloromethane (DCM), ethanol (EtOH) and finally water (H2O) by ultrasound-assisted extraction (UAE). The UAE protocol was found to be more rational than conventional Soxhlet with respect to DCM extraction. Total extraction yield was found to be highest for oregano (Origanum vulgare) with 34.4 g 100-1 g dry matter (DM). H2O-extracts gave the highest yields of the three solvents, with up to 25 g 100-1 g DM for purslane (Portulaca oleracea ssp. sativa) and mint (Mentha piperita). EtOH- and H2O-extracts were the most efficient extracts with respect to free radical scavenging capacity (ABTS (=2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), and oregano, mint, hops (Humulus lupulus) and maral root-leaves (Leuzea carthamoides) were found to be the most efficient antioxidant sources. Hops (EtOH-extract) contained α- and β-acids, xanthohumols, chlorogenic acid and the hitherto unreported 3-O-glucosides of kaempferol and quercetin. Maral root-leaves contained among other compounds hexosides of the 6-hydroxy- and 6-methoxy-kaempferol and -quercetin, whereas roseroot (Rosea rhodiola) revealed contents of rosavin, rhodiosin and rhodionin. Sweet wormwood (Artemisia annua) contained chlorogenic acid and several derivatives thereof, scopoletin and poly-methylated flavones (eupatin, casticin, chrysoplenetin). Antimicrobial potential of different plant extracts was demonstrated against Gram-positive and Gram-negative bacteria using the indicator organisms Staphylococcus aureus, and Escherichia coli, and the Atlantic salmon bacterial pathogens Moritella viscosa, Tenacibaculum finnmarkense and Aliivibrio wodanis. DCM extracts possessed the highest activities. Data demonstrate the potential ability of herb extracts as natural antimicrobials. However, future safety studies should be performed to elucidate any compromising effect on fish health.

Keywords: TEAC; UHPLC-MS; antimicrobial; herbs; solvent extraction; total phenolics.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Antioxidants / chemistry
  • Antioxidants / pharmacology
  • Artemisia annua*
  • Chlorogenic Acid
  • Gram-Negative Bacteria
  • Gram-Positive Bacteria
  • Kaempferols
  • Origanum* / chemistry
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology
  • Quercetin
  • Rhodiola* / chemistry

Substances

  • eupatin
  • Kaempferols
  • Anti-Bacterial Agents
  • Quercetin
  • Chlorogenic Acid
  • Plant Extracts
  • Antioxidants