Machine-Learning-Enabled Design and Manipulation of a Microfluidic Concentration Gradient Generator

Micromachines (Basel). 2022 Oct 24;13(11):1810. doi: 10.3390/mi13111810.

Abstract

Microfluidics concentration gradient generators have been widely applied in chemical and biological fields. However, the current gradient generators still have some limitations. In this work, we presented a microfluidic concentration gradient generator with its corresponding manipulation process to generate an arbitrary concentration gradient. Machine-learning techniques and interpolation algorithms were implemented to help researchers instantly analyze the current concentration profile of the gradient generator with different inlet configurations. The proposed method has a 93.71% accuracy rate with a 300× acceleration effect compared to the conventional finite element analysis. In addition, our method shows the potential application of the design automation and computer-aided design of microfluidics by leveraging both artificial neural networks and computer science algorithms.

Keywords: computer aided design; design automation; interpolation algorithm; machine learning; microfluidics.