Reduced Low-Pressure Membrane Fouling by Inline Coagulation Pretreatment for a Colored River Water

Membranes (Basel). 2022 Oct 22;12(11):1028. doi: 10.3390/membranes12111028.

Abstract

Drinking water treatment (DWT) using low-pressure membranes (LPM) has become increasingly popular due to their many reported advantages compared to conventional technologies. Productivity decline due to fouling has prevented LPMs from becoming the technology of choice in DWT, however, coagulation pretreatment either with or without particle separation mitigates fouling phenomena. The effectiveness of coagulation/flocculation/sedimentation (CF-S), coagulation/flocculation/dissolved air flotation (CF-DAF), and inline coagulation (CF-IN) as technologies for pretreatment of feed water has rarely been investigated using the same water source. In this study, CF-S, CF-DAF, and CF-IN are directly compared as pretreatment of a tubular multi-channeled ultrafiltration (UF) membrane using the same highly colored river water. Three-day long filtration tests were performed using an automated bench-scale filtration apparatus with an inside-out configuration. Although CF-DAF had the greatest removal of dissolved organic matter (DOM) and hydrophobic organics, CF-S pretreatment resulted in a similar level of total fouling. Compared to CF-DAF and CF-S, CF-IN pretreatment resulted in lower fouling. The hydraulic and chemical reversibility of CF-IN fouling was seen to be strongly influenced by the feed water zeta potential, suggesting the importance of floc electrostatic and morphological characteristics on inline coagulation performance.

Keywords: colored water; dissolved air flotation; inline coagulation; membrane fouling; multi–channel membrane; natural organic matter; ultrafiltration.