Study of the Effectiveness of Alumina and HDTMA/Alumina Composite in the Removal of Para-Nitrophenol and the Deactivation of Bacterial Effect of Listeria monocytogenes and Salmonella spp

Life (Basel). 2022 Oct 26;12(11):1700. doi: 10.3390/life12111700.

Abstract

Removal of para-nitrophenol (p-NP) from an aqueous solution was studied under various batch adsorption experiments, using alumina (Al2O3) and its composite hexadecyltrimethylammonium bromide (HDTMA+-Br-) as adsorbents. These were later characterized, before and after adsorption of p-NP, by thermal analysis (DSC-TG), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV/Visible spectroscopies. The results show that HDTMA+/Al2O3 adsorbents have a greater affinity toward p-NP than Al2O3 alone. Linear and non-linear forms of kinetics and isotherms were used to analyze the experimental data obtained at different concentrations and temperatures. The results indicate that the pseudo-second order kinetic model provided the best fit to the experimental data for the adsorption of p-NP on both adsorbents, and that the intra-particle diffusion was not only the rate controlling step. Both the Langmuir and Redlich-Peterson (R-P) models were found to fit the sorption isotherm data well, but the Langmuir model was better. Physical adsorption of p-NP onto the adsorbents proved to be an endothermic and spontaneous process at high temperatures, which mainly involves a hydrogen bonding mechanism of interactions between p-NP and functional groups of adsorbents. The antibacterial activity of Al2O3, HDTMA+-Br- and HDTMA+/Al2O3 were evaluated against Listeria monocytogenes and Salmonella spp. strains using both disc diffusion and broth microdilution methods. The HDTMA+-Br- and HDTMA+/Al2O3 displayed a bacteriostatic effect against all tested strains of Listeria monocytogenes and Salmonella spp., while Al2O3 exhibited no bacterial effect against all bacterial strains tested.

Keywords: Al2O3; HDTMA+/Al2O3; adsorption; antibacterial activity; para-nitrophenol.

Grants and funding

This research received no external funding.