Human Mesenchymal Stem Cell Secretome Driven T Cell Immunomodulation Is IL-10 Dependent

Int J Mol Sci. 2022 Nov 6;23(21):13596. doi: 10.3390/ijms232113596.

Abstract

The Human Mesenchymal Stem Cell (hMSC) secretome has pleiotropic effects underpinning its therapeutic potential. hMSC serum-free conditioned media (SFCM) contains a variety of cytokines, with previous studies linking a changed secretome composition to physoxia. The Jurkat T cell model allowed the efficacy of SFCM vs. serum-free media (SFM) in the suppression of immunological aspects, including proliferation and polarisation, to be explored. Cell growth in SFM was higher [(21% O2 = 5.3 × 105 ± 1.8 × 104 cells/mL) and (2% O2 = 5.1 × 105 ± 3.0 × 104 cells/mL)], compared to SFCM [(21% O2 = 2.4 × 105 ± 2.5 × 104 cells/mL) and (2% O2 = 2.2 × 105 ± 5.8 × 103 cells/mL)]. SFM supported IL-2 release following activation [(21% O2 = 5305 ± 211 pg/mL) and (2% O2 = 5347 ± 327 pg/mL)] whereas SFCM suppressed IL-2 secretion [(21% O2 = 2461 ± 178 pg/mL) and (2% O2 = 1625 ± 159 pg/mL)]. Anti-inflammatory cytokines, namely IL-4, IL-10, and IL-13, which we previously confirmed as components of hMSC SFCM, were tested. IL-10 neutralisation in SFCM restored proliferation in both oxygen environments (SFM/SFCM+antiIL-10 ~1-fold increase). Conversely, IL-4/IL-13 neutralisation showed no proliferation restoration [(SFM/SFM+antiIL-4 ~2-fold decrease), and (SFM/SFCM+antiIL-13 ~2-fold decrease)]. Present findings indicate IL-10 played an immunosuppressive role by reducing IL-2 secretion. Identification of immunosuppressive components of the hMSC secretome and a mechanistic understanding of their action allow for the advancement and refinement of potential future cell-free therapies.

Keywords: MSC; immunomodulation; physoxia; secretome.

MeSH terms

  • Culture Media, Serum-Free
  • Cytokines
  • Humans
  • Immunomodulation
  • Interleukin-10* / metabolism
  • Interleukin-13
  • Interleukin-2
  • Interleukin-4
  • Mesenchymal Stem Cells* / metabolism
  • Secretome

Substances

  • Interleukin-10
  • Interleukin-13
  • Interleukin-2
  • Interleukin-4
  • Culture Media, Serum-Free
  • Cytokines