Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models

Int J Mol Sci. 2022 Nov 3;23(21):13428. doi: 10.3390/ijms232113428.

Abstract

Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.

Keywords: Alzheimer’s disease; amyloid fibrils; drug discovery; fibril formation inhibitors; kinetic models; protein aggregation kinetics; protein misfolding; protein–ligand interactions; protein–protein interactions.

Publication types

  • Review

MeSH terms

  • Amyloid beta-Peptides / metabolism
  • Amyloid* / metabolism
  • Amyloidosis*
  • Humans
  • Kinetics

Substances

  • Amyloid
  • Amyloid beta-Peptides