Influence of Mn Ions' Insertion in Pseudo-Tetragonal Phased CaBi4Ti4O15-Based Ceramics for Highly Efficient Energy Storage Devices and High-Temperature Piezoelectric Applications

Int J Mol Sci. 2022 Oct 22;23(21):12723. doi: 10.3390/ijms232112723.

Abstract

In the present era of advanced technology, the surge for suitable multifunctional materials capable of operating above 300 °C has increased for the utilization of high-temperature piezoelectric devices. For this purpose, a pseudo-tetragonal phased CaBi4Ti3.98 (Nb0.5Fe0.5)0.02O15:xwt%MnO2 (CBTNF:xMn), with x = 0-0.20, ceramic system has been engineered for the investigation of structural, ferroelectric, dielectric and high-temperature-dependent piezoelectric properties. XRD analysis confirms that low-content Mn-ion insertion at the lattice sites of CBTNF does not distort the pseudo-tetragonal phase lattice of CBTNF:xMn ceramics, but enhances the functional behavior of the ceramic system, specifically at x = 0.15 wt%Mn. Compared to pure CBT and CBTNF ceramics, CBTNF:0.15Mn has demonstrated a highly dense relative density (~96%), a saturated polarization (PS) of 15.89 µC/cm2, a storage energy density (WST) of ~1.82 J/cm3, an energy-conversion efficiency (ƞ) of ~51% and an upgraded piezoelectric behavior (d33) of 27.1 pC/N at room temperature. Sharp temperature-dependent dielectric constant (εr) peaks display the solid ferroelectric behavior of the CBTNF:0.15Mn sample with a Curie temperature (TC) of 766 °C. The thermally stable piezoelectric performance of the CBTNF:0.15Mn ceramic was observed at 600 °C, with just a 0.8% d33 loss (25 pC/N). The achieved results signify that multi-valence Mn ions have effectively intercalated at the lattice sites of the pseudo-tetragonal phased CBTNF counterpart and enhanced the multifunctional properties of the ceramic system, proving it to be a durable contender for utilization in energy-storage applications and stable high-temperature piezoelectric applications.

Keywords: BLSF’s; CaBi4Ti4O15; MnO2; energy storage; ferroelectric; piezoelectric; pseudo-tetragonal.

MeSH terms

  • Ceramics / chemistry
  • Manganese Compounds*
  • Oxides
  • Temperature
  • Titanium*

Substances

  • Titanium
  • Manganese Compounds
  • Oxides

Grants and funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number (RGP.2/193/42).