The Impact of Chlorine Disinfection of Hospital Wastewater on Clonal Similarity and ESBL-Production in Selected Bacteria of the Family Enterobacteriaceae

Int J Environ Res Public Health. 2022 Oct 25;19(21):13868. doi: 10.3390/ijerph192113868.

Abstract

Hospitals are regarded as ecological niches of antibiotic-resistant bacteria (ARB). ARB can spread outside the hospital environment via hospital wastewater (HWW). Therefore, HWW is often disinfected in local stations to minimize that risk. Chlorine-based treatment is the most popular method of HWW disinfection around the world, however, recent research has suggested that it can contribute to the spread of antimicrobial resistance (AMR). The aim of this study is to determine the impact of HWW disinfection on the clonal similarity of Enterobacteriaceae species and their ability to produce extended-spectrum beta-lactamases (ESBLs). The study was conducted in a hospital with a local chlorine-based disinfection station. Samples of wastewater before disinfection and samples of disinfected wastewater, collected in four research seasons, were analyzed. Bacteria potentially belonging to the Enterobacteriaceae family were isolated from HWW. The Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) method was used to generate DNA fingerprints of all bacterial isolates. The isolates were phenotypically tested for the production of ESBLs. Antibiotic resistance genes (blaSHV, blaTEM, and blaOXA, blaCTX-M-1-group, blaCTX-M-2-group, blaCTX-9-group and blaCTX-M-8/25-group) were detected by PCR in strains with confirmed phenotypic ability to produce ESBLs. The ESBL+ isolates were identified by the sequencing of 16S rDNA. In the present study, the same bacterial clones were isolated from HWW before and after disinfection and HWW was sampled in different seasons. Genetic and phenotypic variations were observed in bacterial clones. ESBL+ strains were isolated significantly more often from disinfected than from non-disinfected HWW. The blaOXA gene was significantly more prevalent in isolates from disinfected than non-disinfected HWW. Enterobacter hormaechei and Klebsiella pneumoniae were the dominant species in ESBL+ strains isolated from both sampling sites. The results of this study indicate that chlorine-based disinfection promotes the survival of ESBL-producing bacteria and/or the transmission of genetic determinants of antimicrobial resistance. As a result, chlorination increases the proportion of ESBL-producing Enterobacteriaceae in disinfected wastewater. Consequently, chlorine-based disinfection practices may pose a risk to the environment and public health by accelerating the spread of antimicrobial resistance.

Keywords: ERIC-PCR; ESBL; Enterobacteriaceae; antibiotic resistance; chlorination; hospital wastewater; wastewater disinfection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin Receptor Antagonists
  • Angiotensin-Converting Enzyme Inhibitors
  • Anti-Bacterial Agents
  • Chlorine* / pharmacology
  • Disinfection
  • Enterobacteriaceae / genetics
  • Hospitals
  • Microbial Sensitivity Tests
  • Wastewater* / microbiology
  • beta-Lactamases / genetics

Substances

  • Waste Water
  • Chlorine
  • Angiotensin Receptor Antagonists
  • Anti-Bacterial Agents
  • Angiotensin-Converting Enzyme Inhibitors
  • beta-Lactamases

Grants and funding

This research was funded by grants from the National Science Center (Poland) No. 2021/41/N/NZ9/03292.