Identification and Functional Analysis of MAPKAPK2 in Hyriopsis cumingii

Genes (Basel). 2022 Nov 7;13(11):2060. doi: 10.3390/genes13112060.

Abstract

MAPKAPK2 (MK2) is an important regulator of the p38 mitogen-activated protein kinase (p38 MAPK) pathway, which is involved in a plethora of cellular processes concluding the development of gamete cells in meiosis and resisting pathogenic bacterial infestation. Hyriopsis cumingii is a significant mussel resource in China and a good material for pearl breeding. To explore the role of MK2 in H. cumingii, MK2 was identified and cloned, whose full-length cDNA was 1568 bp, including 87 bp in 5' UTR, 398 bp in 3' UTR, and 1083 bp in the open reading frame (ORF) region, encoding 360 amino acids. The expression of MK2 was the highest in the gills. Meanwhile, there was a significant difference in the gonads. After Aeromonas hydrophila and Lipopolysaccharide (LPS) infestation, the transcript level of the MK2 was upregulated in the gills. It indicated that MK2 might be involved in the innate immune response of H. cumingii after a pathogenic attack. After quantifying H. cumingii of different ages, it was found that the expression of MK2 was highest at 1 year old. In situ hybridization (ISH) results showed that the blue-purple hybridization signal was very significant in the oocytes and egg membranes of the female gonads of H. cumingii. The expression of MK2 increased gradually at the age of 1 to 5 months and showed a downward trend at the age of 5 to 8 months. It was suggested that MK2 might play an important role in the formation of primitive germ cells in H. cumingii. To sum up, MK2 might not only be involved in the immune response against pathogenic bacterial infection but also might play an important role in the development of the gonads in H. cumingii.

Keywords: Hyriopsis cumingii; MK2; immune stimulation; reproductive cells development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Cloning, Molecular
  • Female
  • Unionidae* / genetics
  • Unionidae* / microbiology

Substances

  • MAP-kinase-activated kinase 2

Grants and funding

This study was supported by the National Key R&D Program of China (2018YFD0901406) and the National Natural Science Foundation of China (grant no. 31772835). Supported by China Agriculture Research System of MOF and MARA.