Eusocial Transition in Blattodea: Transposable Elements and Shifts of Gene Expression

Genes (Basel). 2022 Oct 26;13(11):1948. doi: 10.3390/genes13111948.

Abstract

(1) Unravelling the molecular basis underlying major evolutionary transitions can shed light on how complex phenotypes arise. The evolution of eusociality, a major evolutionary transition, has been demonstrated to be accompanied by enhanced gene regulation. Numerous pieces of evidence suggest the major impact of transposon insertion on gene regulation and its role in adaptive evolution. Transposons have been shown to be play a role in gene duplication involved in the eusocial transition in termites. However, evidence of the molecular basis underlying the eusocial transition in Blattodea remains scarce. Could transposons have facilitated the eusocial transition in termites through shifts of gene expression? (2) Using available cockroach and termite genomes and transcriptomes, we investigated if transposons insert more frequently in genes with differential expression in queens and workers and if those genes could be linked to specific functions essential for eusocial transition. (3) The insertion rate of transposons differs among differentially expressed genes and displays opposite trends between termites and cockroaches. The functions of termite transposon-rich queen- and worker-biased genes are related to reproduction and ageing and behaviour and gene expression, respectively. (4) Our study provides further evidence on the role of transposons in the evolution of eusociality, potentially through shifts in gene expression.

Keywords: adaptive evolution; cockroach; comparative genomics; comparative transcriptomics; major evolutionary transition; molecular evolution; termite; transposons.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cockroaches* / genetics
  • DNA Transposable Elements / genetics
  • Gene Expression
  • Isoptera* / genetics
  • Social Behavior

Substances

  • DNA Transposable Elements

Grants and funding

This research was funded by the European Union REA through a EU-H2020 MSCA-IF-2020 fellowship, Grant Number 101024100; it was also supported by French National Research Agency Grant No, ANR-19-CE02-0023 (project SOCIOGENOMICS) and by German Research Agency Grant No. BO 2544/15-1.