Using Urinary Biomarkers to Estimate the Benzene Exposure Levels in Individuals Exposed to Benzene

Toxics. 2022 Oct 23;10(11):636. doi: 10.3390/toxics10110636.

Abstract

Urinary benzene metabolites trans, trans-muconic acid (t, t-MA), and S-phenyl mercapturic acid (S-PMA) are often used as biomarkers of internal exposure to benzene. However, there are few reports on using urinary benzene metabolites to estimate airborne benzene concentrations in individuals exposed to benzene. In this study, t, t-MA, and S-PMA were analyzed by UPLC-MS/MS, and a simple pharmacokinetic model was used to calculate the daily intake (DI) of benzene based on the levels of urinary t, t-MA, and S-PMA in occupational individuals. The back-calculated airborne benzene levels (BCABL) were obtained from the DI of benzene. Among the exposed subjects (n = 84), the median BCABL (3.67 mg/m3) based on t, t-MA was very close to the median level of measured airborne benzene (3.27 mg/m3, p = 0.171), and there was no effect of smoking or dietary habits on t, t-MA-based BCABL. In the control subjects (n = 49), the levels of measured airborne benzene were all below the quantitation limit (0.024 mg/m3), and the BCABL (0.002-0.25 mg/m3) calculated by S-PMA was close to this background level. Our study suggests that the t, t-MA-based BCABL can reflect the actual airborne benzene level in a range of 1.10-86.91 mg/m3 and that the S-PMA-based BCABL is more reliable for non-professional benzene exposure.

Keywords: S-PMA; benzene exposure; biological monitoring; daily intake; t, t-MA.