Long-Term Fenofibrate Treatment Stimulates the Phenotypic Microevolution of Prostate Cancer Cells In Vitro

Pharmaceuticals (Basel). 2022 Oct 26;15(11):1320. doi: 10.3390/ph15111320.

Abstract

Fenofibrate is a widely used anti-hyperlipidemic agonist of peroxisome proliferator-activated receptor alpha (PPARα). As a metabolic blocker, fenofibrate interferes with cancer promotion/progression via its misbalancing effects on cellular metabolism. However, the consequences of its long-term application for patients with diagnosed drug-resistant cancers are unknown. We addressed this point by tracing the phenotypic microevolution of naïve and drug-resistant prostate cancer PC3_DCX20 cells that underwent a long-term exposition to 10 μM and 50 μM fenofibrate. Their resistance to fenofibrate, metabolic profile and invasive phenotype were estimated in the control conditions and under fenofibrate-induced stress. Apparently, drug efflux systems are not effective against the cytostatic FF action. However, wtPC3 and PC3_DCX20 cells that survived the long-term 50 μM fenofibrate treatment gave rise to lineages that displayed an increased proliferation rate, lower motility in the control conditions and enhanced fenofibrate resistance. Attenuated fenofibrate bioavailability modified the pattern of PC3 microevolution, as illustrated by phenotypic differences between wtPC3/PC3_DCX20 lineages propagated in the presence of 50 μM and 10 μM fenofibrate. Collectively, our observations indicate that fenofibrate acts as a selective factor that affects prostate cancer microevolution. We also pinpoint potential consequences of long-term exposition of prostate cancer patients to metabolic blockers.

Keywords: drug resistance; fenofibrate; microevolution; prostate cancer.