Increased Levels of Autoantibodies against ROS-Modified Proteins in Depressed Individuals with Decrease in Antibodies against SARS-CoV-2 Antigen (S1-RBD)

Curr Issues Mol Biol. 2022 Oct 28;44(11):5260-5276. doi: 10.3390/cimb44110358.

Abstract

Coronavirus 2019 (COVID-19) disease management is highly dependent on the immune status of the infected individual. An increase in the incidence of depression has been observed during the ongoing COVID-19 pandemic. Autoantibodies against in vitro reactive oxygen species (ROS) modified BSA and Lys as well as antibodies against receptor binding domain subunit S1 (S1-RBD) (S1-RBD-Abs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were estimated using direct binding and competition ELISA. Serum samples were also tested for fasting blood glucose (FBG), malondialdehyde (MDA), carbonyl content (CC), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Significant structural changes were observed in ROS modified BSA and Lys. Female depressed subjects who were also smokers (F-D-S) showed the highest levels of oxidative stress (MDA and CC levels). Similarly, increased levels of autoantibodies against ROS modified proteins were detected in F-D-S subjects, in males who were depressed and in smokers (M-D-S) compared to the other subjects from the rest of the groups. However, contrary to this observation, levels of S1-RBD-Abs were found to be lowest in the F-D-S and M-D-S groups. During the pandemic, large numbers of individuals have experienced depression, which may induce excessive oxidative stress, causing modifications in circulatory proteins. Thus, the formation of neo-antigens is induced, which lead to the generation of autoantibodies. The concomitant effect of increased autoantibodies with elevated levels of IFN-γ and TNF-α possibly tilt the immune balance toward autoantibody generation rather than the formation of S1-RBD-Abs. Thus, it is important to identify individuals who are at risk of depression to determine immune status and facilitate the better management of COVID-19.

Keywords: COVID-19; ELISA; ROS; S1-RBD; S1-RBD-Abs; SARS-CoV-2; autoantibody; depression; oxidative stress.