Involvement of the calcitonin gene-related peptide system in the modulation of inflamed uterus contractile function in pigs

Sci Rep. 2022 Nov 9;12(1):19146. doi: 10.1038/s41598-022-23867-6.

Abstract

This study analyzed severe acute endometritis action on myometrial density and distribution of protein gene product (PGP)9.5- and calcitonin gene-related peptide (CGRP)-like immunoreactive nerve fibers and calcitonin receptor-like receptor (CLR) expression, and on CGRP receptor (CGRPR) participation in uterine contractility in pigs. E. coli suspension (E. coli group) or saline (SAL group) were injected into the uteri, or only laparotomy was performed (CON group). In the E. coli group myometrium, a lack of significant changes in PGP9.5 and CGRP innervation patterns and increased CLR protein level were revealed. In all groups, compared to the pretreatment period, human αCGRP increased amplitude in the myometrium, while reducing it in endometrium/myometrium. In the E. coli group endometrium/myometrium, human αCGRP lowered amplitude vs other groups. Human αCGRP reduced frequency in CON and SAL groups and enhanced it in the E. coli group endometrium/myometrium. The frequency in E. coli group increased vs other groups. CGRPR antagonist, human αCGRP8-37, reversed (CON, SAL groups) and eliminated (E. coli group) the rise in human αCGRP-induced myometrial amplitude. In endometrium/myometrium, human αCGRP8-37 abolished (CON group) and reversed (SAL group) a decrease in frequency, and reduced the rise in frequency (E. coli group) caused by human αCGRP. Collectively, in the myometrium, endometritis did not change PGP9.5 and CGRP innervation patterns and enhanced CLR protein level. CGRPR also mediated in CGRP action on inflamed uterus contractility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcitonin Gene-Related Peptide* / metabolism
  • Endometritis*
  • Escherichia coli
  • Female
  • Humans
  • Myometrium / metabolism
  • Swine
  • Uterus

Substances

  • Calcitonin Gene-Related Peptide