Methodological Studies of the Mechanism of Anion Insertion in Nanometer-Sized Carbon Micropores

ChemSusChem. 2023 Feb 20;16(4):e202201847. doi: 10.1002/cssc.202201847. Epub 2022 Nov 28.

Abstract

Dual-ion hybrid capacitors (DIHCs) are a promising class of electrochemical energy storage devices intermediate between batteries and supercapacitors, exhibiting both high energy and power density, and generalizable across wide chemistries beyond lithium. In this study, a model carbon framework material with a periodic structure containing exclusively 1.2 nm width pores, zeolite-templated carbon (ZTC), was investigated as the positive electrode for the storage of a range of anions relevant to DIHC chemistries. Screening experiments were carried out across 21 electrolyte compositions within a common stable potential window of 3.0-4.0 V vs. Li/Li+ to determine trends in capacity as a function of anion and solvent properties. To achieve fast rate capability, a binary solvent balancing a high dielectric constant with a low viscosity and small molecular size was used; optimized full-cells based on LiPF6 in binary electrolyte exhibited 146 Wh kg-1 and >4000 W kg-1 energy and power densities, respectively.

Keywords: batteries; electrode materials; energy storage; microporous carbon; supercapacitors.